The Wright Stuff: Genes in the Interrogation of Correlation and Causation
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Abstract: The contemporary use of what are now called causal diagrams can be traced back to Sewall Wright’s
introduction of path coefficients in the early 1920s. Wright was explicit that causal evidence was required to formulate
such diagrams and that these schema could not alone provide evidence for or against causality. In population sciences,
germline genetic variation can provide required anchors for the separation of causal from (mere) correlational associa-
tions. Advances in biological and other material sciences offer more for improved causal understanding than new ways
of conceptualising and representing associations. Copyright © 2012 John Wiley & Sons, Ltd.

For most branches of science, the distinction between
(mere) correlation and causation is a central issue. My disci-
pline, epidemiology, is one prone to over interpretation—by
the media, by researchers or both—of associations observed
in data sets that are most plausibly explained by chance, bias
or confounding (Davey Smith & Ebrahim, 2002). James Lee
muses on these issues in the context of behavioural traits within
the psychological literature and promotes the graphical
approach (in particular, directed acyclic graphs) now beloved
of many working within the epidemiological tradition. His
clear presentation merits a close reading and raises issues of
general relevance. I will focus on the opportunities offered by
his statement that ‘the soundness of any causal conclusion
depends on both conforming data and the correctness of the
requisite assumptions. Our substantial prior knowledge of
genetics justifies many powerful assumptions which lead to
correspondingly powerful results.” Indeed, leveraging the
power of germline genetic variation transforms our ability to
elucidate the causal chains within the networks of associations
within the biological realm (Zhu et al., 2007), and whereas
graphical presentations may help, it is the biological realities,
rather than new ways to draw these on paper, that contain
the most promise. These are only now beginning to yield
findings but will transform how we approach causality in the
population sciences.

Lee invokes the evolutionary biologist and population
geneticist Sewall Wright, the progenitor of path anal-
ysis (and, through that, structural equation modelling,
favored more in the psychological than epidemiological
literature) in the prehistory of the now triumphant directed
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acyclic graph. I must admit to being pleased that structural
equation models largely failed to penetrate epidemiology;
their (sometimes) manner of presentation as a form of al-
chemy that can isolate causal pathways in an intercorre-
lated morass of data being scarcely credible. In the
epidemiological setting, underlying social and biological
processes, combined with reverse causation (outcome
influencing apparent exposure, rather than vice versa),
leads to association being the norm rather than the excep-
tion (Davey Smith et al., 2008). Levels of measurement er-
ror that exist in most domains simply cannot be disciplined,
and the confident production of coefficients that apparently
have meaning seems chimeral. Thus, coming across Wright,
authoring a paper in 1921 with the exact same title as Lee,
setting out his stall for his form of path analysis was
enlightening:

The ideal method of science is the study of the direct
influence of one condition on another in experiments
in which all other possible causes of variation are
eliminated. Unfortunately, causes of variation often seem
to be beyond control. In the biological sciences, especially,
one often has to deal with a group of characteristics or
conditions which are correlated because of a complex of
interacting, uncontrollable, and often obscure causes. The
degree of correlation between two variables can be calcu-
lated by well-known methods, but when it is found it gives
merely the resultant of all connecting paths of influence.
The present paper is an attempt to present a method of
measuring the direct influence along each separate path
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in such a system and thus of finding the degree of
which variation of a given effect is determined by each par-
ticular cause. The method depends on the combination
of knowledge of the degrees of correlation among the
variables in a system with such knowledge as may be
possessed of the causal relations. In cases in which the
causal relations are uncertain the method can be used to find
the logical consequences of any particular hypothesis in
regard to them. (Wright, 1921, p. 557)

Wright’s famous path analyses (Figure; Wright, 1920)
required prior causal knowledge to make sense. With this,
they introduced important new understanding, not the least
of which was the identification of what Wright termed
‘intangible variance’—induced by what we may call
stochastic or chance events—that lead to group level,
rather than individual trajectory, understanding. This is
the best that can ever be hoped for in the population
sciences (Davey Smith, 2011b).

To an extent, known biological relationships in quanti-
tative genetic analyses in the behavioural genetics field
provide a form of reliable prior information on the pres-
ence and direction of causation. However, in the molecular
genetics era, the most powerful source of prior causal
knowledge that can, and is, now being leveraged comes
from germline genetic variants that have established
associations with particular traits. R.A. Fisher explicitly
referred to the essentially randomised nature of genetic
perturbations (Fisher, 1952), as Lee mentions and as others
directly associated with Fisher have written -about
(Bodmer, 2003; Box, 2010), although the possibility that
Mendelian randomisation came before experimental
randomisation in Fisher’s intellectual biography has been
little recognised (Davey Smith, 2006). That genetic
variation inducing a group-level difference in a potentially
modifiable phenotype can provide evidence of the
downstream causal effect of this phenotype, free of the
influence of confounding or reverse causation, is now
widely recognised and implemented in epidemiological
studies (Timpson, Wade, & Davey Smith, 2012). To give
just one example of relevance to the study of behavioural
traits—the topic of Lee’s paper—such ‘Mendelian
randomization’ (as the method is generally termed; Davey
Smith & Ebrahim, 2003) has been applied to the effects
of smoking. As proof of principle, such studies have
demonstrated that a genetic variant robustly associated
with smoking behaviour relates to lung cancer risk to the
degree expected by the association of the variant with
appropriately ascertained smoking behaviour (Munafo
et al., 2012; Wang, Broderick, Matakidou, Eisen, &
Houlston, 2011), and associations with several other
smoking-related diseases have been made. Such studies
have also shown that smoking lowers body mass index
(Freathy et al., 2011); despite naive observational associa-
tions sometimes being in the opposite direction, given
confounding by socioeconomic position and various other
socially patterned exposures.

The various assumptions of such Mendelian randomisa-
tion studies have been reviewed (Davey Smith, 2010;
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Lee, this issue; Sheehan, Didelez, Burton, & Tobin,
2008) and are reflected in Lee’s discussion of the
distinction between Fisher’s notion of the as-observed
‘average excess’ associated with a genetic difference and
the ‘average effect’” that would be seen with a gene
substitution. That confounding can exist in genetic
association studies is of course widely recognised, with
ancestral population differences in both gene frequency
and disease risk (‘population stratification’) being the
most likely culprit. There are well-established methods
of accounting for this using genome-wide data as
indices of such population stratification, and with estab-
lished genetic variant-phenotype links, it is remarkable
how homogeneous the associations seen within different
populations generally are, despite allele frequency often
varying between populations (Hindorff et al., 2012).
Empirical data also demonstrate that confounding of
genetic variants with social, behavioural and physiological
factors that plague conventional observational studies
are conspicuous by their absence (Davey Smith et al.,
2008).

Lee considers at length the possibility that selection bias
related to participation in studies could bias findings. Thus,
if a genetically influenced trait was related to willingness to
participate in a study, and this was differential for cases
and controls, a spurious association could be generated. This
is in principle true, but common control groups have been
used for various diseases (e.g. the Wellcome Trust Case
Control Consortium, 2007), and unless the participation
effect was condition specific, such bias would generate
similar associations for all the diseases, which were not
seen. Even if such a participation effect was discase
specific, it would only influence case-control studies, not
prospective studies, and generally, genetic associations
have been similar across study designs (Hindorff et al.,
2012). More complex hypotheses could be advanced
involving interactions of genetic variants influencing
participation and condition-specific disease risk, but plausibil-
ity decreases with increasing elaboration of the hypothesis in
this regard. Again, the fact that similar effects for established
variants tend to be seen in designs with widely differing partic-
ipation rates, from high response rate general population
cohorts to what are essentially volunteer studies, is reassuring
in this regard.

Graphical approaches to causal inference are certainly of
value in forcing investigators to be explicit about
their assumptions and can help in the identification of unrec-
ognised potential biases. There are also often unrecognised
drawbacks to formulaic or mechanical imposition of such
approaches (Dawid, 2008). In epidemiological circles, it is
now not uncommon to receive peer review comments that
focus on “the possible adjustment for a collider in model 3
of Supplementary Table 4”, the reviewer clearly considering
this more important than having an informed overview of
the totality of evidence presented. ‘Inference to the best
explanation’ (Lipton, 2004), which is surely what any attempt
at causal reasoning is aiming at, can go out of the window as
the d-connected nodes, rather than how the world actually is,
become the focus of attention.
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Wright opined that ‘great refinement in statistical
treatment is often a waste of effort” (Wright, 1917).
William Provine (1986), in his unsurpassable intellectual
biography of Wright, discusses the development of path
analysis and how, working with methods that tried to
hold other factors constant through statistical manipulation,
‘Wright was still dissatisfied. He saw clearly that by
itself the partial correlation coefficient, like the correlation
coefficient, was a mathematical quantity not tied or
leading by itself to any causal interpretation of the relations
under examination. Wright wanted to minimise correla-
tional statistics and maximise the quantitative causal
interpretation of the variables’ (p. 127). This can only be
carried out when causal anchors—that come from how
the material world is, not how we draw diagrams on
paper—are introduced into the mix. Germline genetic
variants provide precisely such anchors and open up vast
new vistas of possible causal understanding generated from
observational data (Davey Smith, 2011a).
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Diagram illustrating the casual relations between litter mates
(O, O) and between each of them and their parents. H, H’, H"
and H'" represent the genetic constitutions of the four indivi-
duals; G, G’, G" and G™ represent that of four germ cells. E
represents such environmental factors as are common to litter
mates. D represents other factors, largely ontogenetic irregu-
larity. The small letters stand for the various path coefficients.



